
Package: postpack (via r-universe)
November 4, 2024

Title Utilities for Processing Posterior Samples Stored in
'mcmc.lists'

Version 0.5.4.9000

Description The aim of 'postpack' is to provide the infrastructure for
a standardized workflow for 'mcmc.list' objects. These objects
can be used to store output from models fitted with Bayesian
inference using 'JAGS', 'WinBUGS', 'OpenBUGS', 'NIMBLE',
'Stan', or even custom MCMC algorithms. Although the 'coda' R
package provides some methods for these objects, it is somewhat
limited in easily performing post-processing tasks for specific
nodes. Models are ever increasing in their complexity and the
number of tracked nodes, and oftentimes a user may wish to
summarize/diagnose sampling behavior for only a small subset of
nodes at a time for a particular question or figure. Thus, many
'postpack' functions support performing tasks on a subset of
nodes, where the subset is specified with regular expressions.
The functions in 'postpack' streamline the extraction,
summarization, and diagnostics of specific monitored nodes
after model fitting. Further, because there is rarely only ever
one model under consideration, 'postpack' scales efficiently to
perform the same tasks on output from multiple models
simultaneously, facilitating rapid assessment of model
sensitivity to changes in assumptions.

Depends R (>= 3.5.0)

Imports stringr (>= 1.3.1), coda, mcmcse, abind

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

URL https://bstaton1.github.io/postpack/

BugReports https://github.com/bstaton1/postpack/issues

1

https://bstaton1.github.io/postpack/
https://github.com/bstaton1/postpack/issues

2 Contents

Suggests knitr, rmarkdown, rstan, R2WinBUGS, R2jags, R2OpenBUGS,
nimble, rjags, jagsUI

VignetteBuilder knitr

Repository https://bstaton1.r-universe.dev

RemoteUrl https://github.com/bstaton1/postpack

RemoteRef HEAD

RemoteSha eddf9dbf6ec8a70845f9edcf60b3aaa4efc9fa46

Contents

array_format . 3
cjs . 4
cjs_no_rho . 4
density_plot . 5
diag_plots . 5
drop_index . 7
get_params . 8
id_mat . 9
ins_regex_bracket . 9
ins_regex_lock . 10
list_out . 10
match_params . 11
mytitle . 12
postpack . 13
post_bind . 13
post_convert . 14
post_dim . 16
post_remove . 17
post_subset . 18
post_summ . 19
post_thin . 21
rm_regex_bracket . 22
rm_regex_lock . 23
trace_plot . 23
vcov_decomp . 24
write_model . 25

Index 27

array_format 3

array_format Convert a vector to the array structure used in model

Description

Use element names to place vector elements in the appropriate location of an array.

Usage

array_format(v)

Arguments

v A vector with names indicating the index location of each element in a new
array. See the details (particularly the example) for more about what this means.

Details

Suppose you have an AxB matrix in your model, and you would like to create an object that stores
the posterior means in the same AxB matrix as found in the model. For an AxB matrix, this is not
too difficult to do "by-hand". However, if there are also dimensions C, D, and E, missing values,
etc. it becomes more difficult.

Value

An array with elements of v placed in the appropriate location based on their index names.

Note

Up to 10 dimensions are currently supported. Please submit an issue should you find that you need
more dimensions.

Examples

load example mcmc.list
data(cjs)

find an array node from your model
match_params(cjs, "SIG")

extract the posterior mean of it
SIG_mean = post_summ(cjs, "SIG")["mean",]

note that it has element names
SIG_mean

create a matrix with elements in the proper place
array_format(SIG_mean)

https://github.com/bstaton1/postpack/issues

4 cjs_no_rho

cjs Example mcmc.list 1

Description

An example of samples from a joint posterior distribution from a Cormack-Jolly-Seber model. The
specific context does not matter, this object is provided to show examples of ’postpack’ func-
tionality.

Usage

cjs

Format

A mcmc.list object.

Source

Posterior samples generated from a model fitted to hypothetical data set. See vignette("example-mcmclists")
on the context, model, and monitored parameters.

cjs_no_rho Example mcmc.list 2

Description

An example of samples from a joint posterior distribution from a Cormack-Jolly-Seber model. The
specific context does not matter, this object is provided to show examples of ’postpack’ func-
tionality.

Usage

cjs_no_rho

Format

A mcmc.list object.

Source

This object stores samples from the same hypothetical example as for the cjs example object, with
one small change to the model. The rho term that models correlation between slopes and intercepts
was forced to be zero, rather than estimating it. Consult vignette("example-mcmclists") for
more details.

density_plot 5

density_plot Create a density plot for a single desired node

Description

Used by diag_plots(), not intended to be called separately

Usage

density_plot(post, param, show_diags = "if_poor_Rhat")

Arguments

post A mcmc.list object.

param A regular expression that matches a single element in the model. E.g., "b0[1]",
not "b0". See match_params().

show_diags Control when to display numerical diagnostic summaries on plots. Must be one
of "always", "never", or "if_poor_Rhat". "if_poor_Rhat" (the default) will
display the Rhat and effective MCMC samples if the Rhat statistic is greater than
1.1.

Value

A figure showing the posterior density, separated by chain.

Note

This is not a function users will generally use directly. Call diag_plots() instead.

diag_plots Create MCMC diagnostic plots for nodes of interest

Description

Allows quick visualization of posterior density and trace plots, both separated by chain, for the
desired nodes of interest. Includes the ability to plot in the RStudio graphics device, an external
device, or a PDF file. Further, with the auto settings, the dimensions of the plotting device scales to
the job needed.

6 diag_plots

Usage

diag_plots(
post,
params,
ext_device = FALSE,
show_diags = "if_poor_Rhat",
layout = "auto",
dims = "auto",
keep_percent = 1,
save = FALSE,
file = NULL,
auto_escape = TRUE

)

Arguments

post A mcmc.list object.

params A vector of regular expressions specifying the nodes to match for plotting.
Accepts multi-element vectors to match more than one node at a time. See
match_params() and vignette("pattern-matching") for more details.

ext_device Display plots in an external device rather than the active device? FALSE (the
default) will plot in the active device (including RStudio window). TRUE will
create a new graphics device.

show_diags Control when to display numerical diagnostic summaries on plots. Must be one
of "always", "never", or "if_poor_Rhat". "if_poor_Rhat" (the default) will
display the Rhat and effective MCMC samples if the Rhat statistic is greater than
1.1.

layout Control how parameter diagnostics are organized into "ROWSxCOLUMNS". For
example, layout = "4x1" has 4 rows and 1 column of parameter diagnostics.
Defaults to "auto", which selects between the only accepted options of "1x1",
"2x1", "4x1", "4x2", and "5x3".

dims Control the dimensions of the graphics device using "HEIGHTxWIDTH" in inches.
For example, "5x7" would create a 5 inch tall and 7 inch wide plotting device.
Defaults to "auto", which selects the dimensions that look nice when layout =
"auto" as well.

keep_percent Proportion (between 0 and 1) of samples to keep for trace plotting. Passed to
post_thin().

save Save the diagnostic plots in a PDF file? If so, specify file = "example.pdf" as
well. Defaults to FALSE.

file File name of a PDF file to save the plots to. Must include the ".pdf" extension.
Saved to working directory by default, but can receive an absolute or relative file
path as part of this argument.

auto_escape Automatically escape "[" and "]" characters for pattern matching? See match_params()
for details.

drop_index 7

Value

A multi-panel figure showing the posterior density and trace plots for requested nodes. The device
in which it is placed depends on the argument values.

Note

If saving as a pdf, these files can get very large with many samples and render slowly. The
keep_percent argument is intended to help with this by thinning the chains at quasi-evenly spaced
intervals.

See Also

match_params(), density_plot(), trace_plot()

Examples

if (interactive()) {
#load example mcmc.list
data(cjs)

use current device
diag_plots(cjs, "B0")

use a new device
diag_plots(cjs, "B0", ext_device = TRUE)

always show diagnostic summaries
diag_plots(cjs, "B0", show_diags = "always")

use a different layout (leaving it as "auto" is usually best)
diag_plots(cjs, c("sig", "b"), layout = "5x3")

save diagnostics for all nodes to a pdf file
diag_plots(cjs, "", save = TRUE, file = "diags.pdf")

}

drop_index Extract the base node name of a parameter

Description

Removes square brackets, numbers, and commas that represent the index of the node element in
question. Returns just the node name.

Usage

drop_index(params)

8 get_params

Arguments

params Node names.

Value

A character vector with the same length as params, with no indices included. For example, "a[1]"
becomes "a".

Note

This is not a function users will generally use directly.

get_params Obtain the names of all nodes

Description

Returns the names of all quantities stored in a mcmc.list object.

Usage

get_params(post, type = "base_only")

Arguments

post A mcmc.list object.

type Format of returned matches; only two options are accepted:

• type = "base_only" (the default) to return only the unique node names
(without indices).

• type = "base_index" to return the node names with indices included.

Value

A character vector with all node names stored in the post object, formatted as requested by type.

Examples

load example mcmc.list
data(cjs)

get only node names, no indices (default)
get_params(cjs, type = "base_only")

get indices too, where applicable
get_params(cjs, type = "base_index")

id_mat 9

id_mat Extract chain and iteration IDs for each sample

Description

Extract chain and iteration IDs for each sample

Usage

id_mat(post)

Arguments

post A mcmc.list object.

Value

A matrix with columns "CHAIN" and "ITER".

Note

This is not a function users will generally use directly.

ins_regex_bracket Insert escapes on regex brackets

Description

Insert escapes on regex brackets

Usage

ins_regex_bracket(params)

Arguments

params Node names.

Details

Searches the contents of a string for the occurrence of a square bracket or two, and inserts the
necessary escapes for pattern matching via regular expressions.

Value

A character vector with all brackets escaped. For example, "a[1]" becomes "a\\[1\\]"

10 list_out

Note

This is not a function users will generally use directly.

ins_regex_lock Insert the symbols to lock in a string for matching

Description

To ensure that a regular expression will match exactly, it’s necessary to specify so.

Usage

ins_regex_lock(params)

Arguments

params Node names to paste a ^ and $ (if not already present) to lock in the match.

Value

A character vector with locking anchors inserted to force an exact match. For example, "a\\[1\\]"
becomes "^a\\[1\\]$".

Note

This is not a function users will generally use directly.

list_out List vector elements in a nice format

Description

Converts a vector into a comma-separated list for use in sentences (error messages, warnings, etc.).

Usage

list_out(x, final = NULL, per_line = 1e+06, wrap = NULL, indent = NULL)

Arguments

x A vector, will be coerced to a character.
final Word that will separate the final element in the list from others. See the exam-

ples.
per_line Number of elements printed per line. See the examples.
wrap Optional character to wrap around each element, e.g., quotation marks.
indent Optional string to place in front of the first element on each line. See the exam-

ples.

match_params 11

Value

A character vector with length == 1; ready to be passed to base::stop(), base::warning(), or
base::cat(), to provide a useful message.

match_params Find matching node names

Description

Returns all the node names stored in a mcmc.list object that match a provided string.

Usage

match_params(post, params, type = "base_index", auto_escape = TRUE)

Arguments

post A mcmc.list object.

params A vector of regular expressions specifying the nodes to match. Accepts multi-
element vectors to match more than one node at a time. See examples and
vignette("pattern-matching") for more details.

type Format of returned matches; only two options are accepted:

• type = "base_only" to return only the unique node names (without in-
dices).

• type = "base_index" (the default) to return the node names with indices
included.

auto_escape Automatically escape "[" and "]" characters for pattern matching? FALSE will
treat "[" and "]" as special regular expression characters (unless explicitly es-
caped by user), TRUE will treat these symbols as plain text to be matched. It is
generally recommended to keep this as TRUE (the default), unless you are per-
forming complex regex searches that require the "[" and "]" symbols to be
special characters.

Details

This function is called as one of the first steps in many of the more downstream functions in this
package. It is thus fairly important to get used to how the regular expressions work. This function
can be used directly to hone in on the correct regular expression. See the examples below.

Value

A character vector with all node names in post that match params, formatted as requested by type..
If no matches are found, an error will be returned with the base node names found in post to help
the next try.

12 mytitle

Examples

load example mcmc.list
data(cjs)

these produce same output b/c of regex pattern matching
match_params(cjs, params = c("b0", "b1"))
match_params(cjs, params = c("b"))

return only base names, not indices as well
match_params(cjs, params = "b", type = "base_only")

force a match to start with B
match_params(cjs, "^B")

force a match to end with 0
match_params(cjs, "0$")

use a wild card to get b0[3] and b1[3]
match_params(cjs, "b.[3]")

repeat a wild card
match_params(cjs, "s.+0")

turn off auto escape to use [] in regex syntax rather than matching them as text
match_params(cjs, params = "[:digit:]$", auto_escape = FALSE)

pass a dot to match all (same as get_params)
match_params(cjs, ".")

mytitle Add a title between two figures

Description

Used by diag_plots() to place a common title over top of two figures: one density and one trace
for a given node.

Usage

mytitle(text)

Arguments

text The text string to include as a centered title over two adjacent plots.

Note

This is not a function users will generally use directly.

postpack 13

postpack Utilities for Processing Posterior Samples Stored in mcmc.lists

Description

The aim of ’postpack’ is to provide the infrastructure for a standardized workflow for mcmc.list
objects. These objects can be used to store output from models fitted with Bayesian inference using
JAGS, Win/OpenBUGS, NIMBLE, Stan, or even custom MCMC algorithms (see post_convert()
for converting samples to mcmc.list format). Although the ’coda’ package provides some methods
for these objects, it is somewhat limited in easily performing post-processing tasks for particular
nodes. Models are ever increasing in their complexity and the number of tracked nodes, and often-
times a user may wish to summarize/diagnose sampling behavior for only a small subset of nodes at
a time for a particular question or figure. Thus, many ’postpack’ functions support performing tasks
on a subset of nodes, where the subset is specified with regular expressions. The functions in this
package streamline the extraction, summarization, and diagnostics of particular nodes monitored
after model fitting. Further, because there is rarely only ever one model under consideration, ’post-
pack’ scales efficiently to perform the same tasks on output from multiple models simultaneously,
facilitating rapid assessment of model sensitivity to changes in assumptions.

post_bind Combine two objects containing posterior samples

Description

Intended for use when derived quantities are calculated from monitored posterior samples, and you
wish to combine them into the master mcmc.list, as though they were calculated and monitored
during MCMC sampling. It is not advised to combine samples from two MCMC runs, because
covariance of MCMC sampling would be lost.

Usage

post_bind(post1, post2, dup_id = "_p2")

Arguments

post1 A mcmc.list or matrix object.

post2 A mcmc.list or matrix object.

dup_id If any node names are duplicated in post2, what should be appended to the end
of these node names in the output? If this occurs a warning will be returned.
Defaults to "_p2"

14 post_convert

Details

Some important things to note:

• If the object passed to post1 is a matrix, post2 must be a mcmc.list, and vice versa.

• That is, two mcmc.list objects are allowed, but not two matrix objects.

• For matrix objects, nodes should be stored as columns and samples should be stored as rows.
Column names should be present.

• The objects passed to post1 and post2 must have the same number of chains, iterations,
burnin, and thinning interval.

• If the node names are empty (e.g., missing column names in a matrix), the node names will
be coerced to "var1", "var2", etc. and a warning will be returned.

Value

A single mcmc.list object containing samples of the nodes from both post1 and post2.

Examples

load example mcmc.list
data(cjs)

create two subsets from cjs: one as mcmc.list and one as matrix
also works if both are mcmc.list objects
p1 = post_subset(cjs, "b0")
p2 = post_subset(cjs, "b1", matrix = TRUE)

combine them into one mcmc.list
head(post_bind(p1, p2))

post_convert Convert MCMC samples to mcmc.list format

Description

Wrapper around several ways of converting objects to mcmc.list format, automated based on the
input object class.

Usage

post_convert(obj)

Arguments

obj An object storing posterior samples from an MCMC algorithm. Accepted classes
are list, matrix, stanfit, bugs, rjags.

post_convert 15

Details

Accepted classes are produced by several packages, including but probably not limited to:

• stanfit objects are created by rstan::stan(), which also provides rstan::As.mcmc.list().
Rather than requiring users to have ’rstan’ installed to use ’postpack’, post_convert() will
instruct users to use this function if supplied a stanfit object.

• bugs objects are created by R2WinBUGS::bugs() and R2OpenBUGS::bugs().

• rjags objects are created by R2jags::jags().

• list objects are created by nimble::runMCMC(), ’MCMCpack’ functions, or custom MCMC
algorithms.

• matrix objects are created by post_subset() and is often the format of posterior quantities
derived from monitored nodes.

• mcmc.list objects are created by rjags::coda.samples(), jagsUI::jags.basic(), and
jagsUI::jags()$samples. If a mcmc.list object is passed to obj, an error will be returned
telling the user this function is not necessary.

If you find that a critical class conversion is missing, please submit an issue requesting its addition
with a minimum working example of how it can be created.

Value

The same information as passed in the obj argument, but formatted as mcmc.list class.

Note

• If samples are stored in a list object, the individual elements must be matrix or mcmc class,
storing the samples (rows) across parameters (columns, with names) for each chain (list
elements). If list elements are in matrix format, they will be coerced to mcmc format, and
thinning, start, and end intervals may be inaccurate.

• If samples are stored in a matrix object, rows should store samples and columns should store
nodes. Multiple chains should be combined using base::rbind(). Two additional columns
must be present: "CHAIN" and "ITER", which denote the MCMC chain and iteration numbers,
respectively.

See Also

coda::as.mcmc.list(), coda::as.mcmc()

Examples

EXAMPLE 1
load example mcmc.list
data(cjs)

take a subset from cjs as a matrix, retain chain and iter ids
cjs_sub = post_subset(cjs, "^B", matrix = TRUE, chains = TRUE, iters = TRUE)

convert back to mcmc.list

https://github.com/bstaton1/postpack/issues

16 post_dim

class(post_convert(cjs_sub))

EXAMPLE 2: create mcmc.list from hypothetical MCMC samples; chains are list elements
create hypothetical samples; can't use postpack on this - not an mcmc.list
samps = lapply(1:3, function(i) {

m = matrix(rnorm(100), 20, 5)
colnames(m) = paste0("param", 1:5)
m

})

convert
samps_new = post_convert(samps)

can use postpack now
post_summ(samps_new, "param")

EXAMPLE 3: create mcmc.list from hypothetical MCMC samples; chains rbind-ed matrices
create samples
f = function() {

m = matrix(rnorm(100), 20, 5)
colnames(m) = paste0("param", 1:5)
m

}
samps = rbind(f(), f(), f())

assign chain and iter IDs to each sample
samps = cbind(CHAIN = rep(1:3, each = 20), ITER = rep(1:20, 3), samps)

convert
samps_new = post_convert(samps)

can use postpack now
post_summ(samps_new, "param")

post_dim Obtain MCMC dimensions from an mcmc.list

Description

Quickly query the number of burn-in samples, post-burnin, thinning, number of chains, etc. from a
mcmc.list object.

Usage

post_dim(post, types = NULL)

Arguments

post A mcmc.list object.

post_remove 17

types The dimension types to return. Must contain some of "burn", "post_burn",
"thin", "chains", "nodes". Defaults to NULL, in which case all of these are
returned.

Value

A numeric vector with named elements, which may contain:

• burn: The burn-in period + adapting phase (per chain).

• post_burn: The post-burn-in period (per chain).

• thin: The thinning interval post-burn-in.

• chains: The number of chains.

• saved: The number of saved samples across all chains.

• params: The number of nodes with MCMC samples.

All of these will be returned if types = NULL, a subset can be returned by specifying (for example)
types = c("burn", "thin").

Note

If the post object was thinned after MCMC completed using post_thin(), then the "burn" and
"thin" dimensions will be improperly calculated. post_thin() performs post-MCMC thinning of
mcmc.list objects, and is solely for developing long-running post-processing code, so this is okay.

Examples

load example mcmc.list
data(cjs)

get all relevant dimensions
post_dim(cjs)

get only the number of chains
post_dim(cjs, "chains")

get the thinning and burn-in intervals
post_dim(cjs, c("burn", "thin"))

post_remove Remove nodes from mcmc.list

Description

Just like post_subset(), but keep all nodes except those that match.

Usage

post_remove(post, params, ask = TRUE, auto_escape = TRUE)

18 post_subset

Arguments

post A mcmc.list object.

params A vector of regular expressions specifying the nodes to match for removal.
Accepts multi-element vectors to match more than one node at a time. See
match_params() and vignette("pattern-matching") for more details.

ask Prompt user for a response prior to removing nodes?

auto_escape Automatically escape "[" and "]" characters? See match_params() for details.

Value

A mcmc.list, identical in all ways to the original except that nodes matched by the params argu-
ment are removed. If the user responds "no" to the question when ask = TRUE, post is returned
unaltered.

Examples

load example mcmc.list
data(cjs)

get names of all nodes
get_params(cjs)

remove the SIG nodes
new_cjs = suppressMessages(post_remove(cjs, "SIG", ask = FALSE))

get names of new output
get_params(new_cjs)

post_subset Extract samples from specific nodes

Description

Subsets a smaller portion from a mcmc.list object corresponding only to the node(s) requested.

Usage

post_subset(
post,
params,
matrix = FALSE,
iters = FALSE,
chains = FALSE,
auto_escape = TRUE

)

post_summ 19

Arguments

post A mcmc.list object.

params A vector of regular expressions specifying the nodes to match for subsetting.
Accepts multi-element vectors to match more than one node at a time. See
match_params() and vignette("pattern-matching") for more details.

matrix Return samples in matrix rather than mcmc.list format?

iters Retain the iteration number of each sample if matrix = TRUE? Not used other-
wise.

chains Retain the chain number of each sample if matrix = TRUE? Not used otherwise.

auto_escape Automatically escape "[" and "]" characters for pattern matching? See match_params()
for details.

Value

A mcmc.list or matrix object, depending on the value of the matrix argument. Object contains
all nodes that match the params argument; an error will be returned if no matches are found.

See Also

match_params()

Examples

load example mcmc.list
data(cjs)

create mcmc.list with all nodes that contain "B0"
x1 = post_subset(cjs, "B0")

create mcmc.list with all nodes that contain "b" or "B"
x2 = post_subset(cjs, c("b", "B"))

perform the subset and return a matrix as output, while retaining the chain ID
x3 = post_subset(cjs, "B0", matrix = TRUE, chain = TRUE)

post_summ Obtain posterior summaries and diagnostics of specific nodes

Description

Allows rapid calculation of summaries and diagnostics from specific nodes stored in mcmc.list
objects.

20 post_summ

Usage

post_summ(
post,
params,
digits = NULL,
probs = c(0.5, 0.025, 0.975),
Rhat = FALSE,
neff = FALSE,
mcse = FALSE,
by_chain = FALSE,
auto_escape = TRUE

)

Arguments

post A mcmc.list object.

params A vector of regular expressions specifying the nodes to match for summariza-
tion. Accepts multi-element vectors to match more than one node at a time. See
match_params() and vignette("pattern-matching") for more details.

digits Control rounding of summaries. Passed to base::round() and defaults to NULL,
which produces no rounding.

probs Posterior quantiles to calculate. Passed to stats::quantile(). Defaults to
probs = c(0.5, 0.025, 0.975) (i.e., median and equal-tailed 95 percent cred-
ible interval).

Rhat Calculate the Rhat convergence diagnostic using coda::gelman.diag()? Fair
warning: this can take a bit of time to run on many nodes/samples.

neff Calculate the number of effective MCMC samples using coda::effectiveSize()?
Fair warning: this can take a bit of time to run on many nodes/samples.

mcse Calculate the Monte Carlo standard error for the posterior mean and reported
quantiles using the mcmcse::mcse() and mcmcse::mcse.q() functions (batch
means method with batch size automatically calculated)? Fair warning: this can
take a bit of time to run on many nodes/samples.

by_chain Calculate posterior summaries for each chain rather than for the aggregate across
chains? Defaults to FALSE. The arguments Rhat, neff, and mcse are ignored if
by_chain = TRUE and a warning will be returned.

auto_escape Automatically escape "[" and "]" characters for pattern matching? See match_params()
for details.

Value

A matrix object with summary statistics as rows and nodes as columns. If by_chain = TRUE, an
array with chain-specific summaries as the third dimension is returned instead.

See Also

match_params(), coda::gelman.diag(), coda::effectiveSize(), mcmcse::mcse(), mcmcse::mcse.q()

post_thin 21

Examples

load example mcmc.list
data(cjs)

calculate posterior summaries for the "p" nodes
("p[1]" doesn't exist in model)
post_summ(cjs, "p")

do this by chain
post_summ(cjs, "p", by_chain = TRUE)

calculate Rhat and Neff diagnostic summaries as well
multiple node names too
post_summ(cjs, c("b0", "p"), Rhat = TRUE, neff = TRUE)

calculate Monte Carlo SE for mean and quantiles, with rounding
post_summ(cjs, "p", mcse = TRUE, digits = 3)

summarize different quantiles: median and central 80%
post_summ(cjs, "p", probs = c(0.5, 0.1, 0.9))

post_thin Perform post-MCMC thinning

Description

Removes iterations from each chain of a mcmc.list object at quasi-evenly spaced intervals. Post-
MCMC thinning is useful for developing long-running post-processing code with a smaller but
otherwise identical mcmc.list.

Usage

post_thin(post, keep_percent, keep_iters)

Arguments

post A mcmc.list object.

keep_percent Proportion (between 0 and 1) of samples to keep from each chain. Setting
keep_percent = 0.2 will remove approximately 80 percent of the samples.

keep_iters Number of samples to keep from each chain.

Details

The samples will be removed at as evenly spaced intervals as possible, however, this is not perfect.
It is therefore recommended to use the full posterior for final post-processing calculations, but this
should be fine for most development of long-running code.

If both keep_percent and keep_iters are supplied, an error will be returned requesting that only
one be used.

22 rm_regex_bracket

Value

A mcmc.list object, identical to post, but with fewer samples of each node.

Note

Iteration numbers are reset after thinning the samples. So if running post_dim() on output passed
through post_thin(), you cannot trust the burn-in or thinning counts. Again, this is not an issue
for developing post-processing code.

Examples

load example mcmc.list
data(cjs)

take note of original dimensions
post_dim(cjs)

keep ~20% of the samples
cjs_thin1 = post_thin(cjs, keep_percent = 0.2)

note burn-in and thin intervals no longer correct!
but desired outcome achieved - identical object but smaller
post_dim(cjs_thin1)

keep 30 samples per chain
cjs_thin2 = post_thin(cjs, keep_iters = 30)
post_dim(cjs_thin2)

rm_regex_bracket Remove escapes on regex brackets

Description

Remove escapes on regex brackets

Usage

rm_regex_bracket(params)

Arguments

params Node names.

Details

Searches the contents of a string for the occurrence of a square bracket or two (that has been es-
caped), and removes the escaping that was necessary for matching via regular expressions.

rm_regex_lock 23

Value

A character vector with all brackets escaped. For example, "a\\[1\\]" becomes "a[1]".

Note

This is not a function users will generally use directly.

rm_regex_lock Remove the symbols that lock in a string for matching

Description

Undoes the work of ins_regex_lock().

Usage

rm_regex_lock(params)

Arguments

params Node names to remove a ^ and $ from (if present).

Value

A character vector with locking anchors inserted to force an exact match. For example, "^a\\[1\\]$"
becomes "a\\[1\\]".

Note

This is not a function users will generally use directly.

trace_plot Create a trace plot for a single desired node

Description

Create a trace plot for a single desired node

Usage

trace_plot(post, param, keep_percent = 1)

24 vcov_decomp

Arguments

post A mcmc.list object.

param A regular expression that matches a single element in the model. E.g., "b0[1]",
not "b0". See match_params().

keep_percent A numeric vector of length == 1 and on the range (0,1]. Percent of samples
you’d like to keep for trace plotting and passed to post_thin().

Note

If saving as a pdf file, these files can get very large with many samples and render slowly. The
keep_percent argument is intended to help with this by thinning the chains at quasi-evenly spaced
intervals. This is not a function users will generally use directly. Call diag_plots() instead.

vcov_decomp Decompose the posterior of a variance-covariance node

Description

For each posterior sample, extract the standard deviation and correlation components of a monitored
node representing a variance-covariance matrix.

Usage

vcov_decomp(
post,
param,
sigma_base_name = "sigma",
rho_base_name = "rho",
invert = FALSE,
check = TRUE,
auto_escape = TRUE

)

Arguments

post A mcmc.list object.

param A vector of regular expressions specifying the nodes to match for plotting. Must
match only one base node name in post, and that node must store samples from
a matrix within the model. See match_params() and vignette("pattern-matching")
for more details.

sigma_base_name

Base node name to assign to the standard deviation vector component? Defaults
to "sigma", which becomes "sigma[1]", "sigma[2]", etc. in the output.

rho_base_name Same as sigma_base_name, but for the correlation matrix component.

write_model 25

invert Take the inverse of the matrix node matched by param prior to performing the
calculations? This would be necessary if the matrix node was expressed as a pre-
cision matrix as used in the BUGS language. Triggers a call to base::solve().

check Perform checks sequentially that the matrix node is (a) square, (b) symmetrical,
and (c) positive definite before proceeding with the calculations? If set to FALSE,
unexpected output may be returned or other errors related to items a, b, and c
may be triggered - this is not advised, though may be required if wishing to set
invert = TRUE.

auto_escape Automatically escape "[" and "]" characters for pattern matching? See match_params()
for details.

Value

A mcmc.list object.

Examples

load example mcmc.list
data(cjs)

"SIG" is a covariance matrix node
SIG_decomp = vcov_decomp(cjs, "SIG")

extract the posterior mean correlation matrix, and reformat
array_format(post_summ(SIG_decomp, "rho")["mean",])

write_model Export BUGS/JAGS model from function to file

Description

Performs the same basic function as R2OpenBUGS::write.model()

Usage

write_model(fun, file)

Arguments

fun A function object containing BUGS/JAGS model code

file A character vector of length == 1: the name of the file to write to

Details

Performs the same basic function as R2OpenBUGS::write.model(), but with slightly better output
(scientific notation, spacing, etc.). The main reason it was created for use in ’postpack’ was to
remove the need for using the ’R2OpenBUGS’ package when not using OpenBUGS.

26 write_model

Value

Nothing, but file is written to disk.

Examples

if (interactive()) {
define some simple BUGS model as an R function
note the use of %_% to include a truncation
mod = function() {

PRIORS
mu ~ dnorm(0,0.001) %_% T(0,)
sig ~ dunif(0,10)
tau <- 1/sig^2

LIKELIHOOD
for (i in 1:n) {

y[i] ~ dnorm(mu, tau)
}

}

write model to a text file to be called by BUGS/JAGS
write_model(mod, "model.txt")

}

Index

∗ datasets
cjs, 4
cjs_no_rho, 4

array, 20
array_format, 3

base::cat(), 11
base::rbind(), 15
base::round(), 20
base::solve(), 25
base::stop(), 11
base::warning(), 11
bugs, 14, 15

cjs, 4, 4
cjs_no_rho, 4
coda::as.mcmc(), 15
coda::as.mcmc.list(), 15
coda::effectiveSize(), 20
coda::gelman.diag(), 20

density_plot, 5
density_plot(), 7
diag_plots, 5
diag_plots(), 5, 12, 24
drop_index, 7

get_params, 8

id_mat, 9
ins_regex_bracket, 9
ins_regex_lock, 10
ins_regex_lock(), 23

jagsUI::jags(), 15
jagsUI::jags.basic(), 15

list, 14, 15
list_out, 10

match_params, 11

match_params(), 5–7, 18–20, 24, 25
matrix, 13–15, 19, 20
mcmc, 15
mcmc.list, 4–6, 8, 9, 11, 13–22, 24, 25
mcmcse::mcse(), 20
mcmcse::mcse.q(), 20
mytitle, 12

nimble::runMCMC(), 15

post_bind, 13
post_convert, 14
post_convert(), 13
post_dim, 16
post_dim(), 22
post_remove, 17
post_subset, 18
post_subset(), 15, 17
post_summ, 19
post_thin, 21
post_thin(), 6, 17, 24
postpack, 13

R2jags::jags(), 15
R2OpenBUGS::bugs(), 15
R2OpenBUGS::write.model(), 25
R2WinBUGS::bugs(), 15
rjags, 14, 15
rjags::coda.samples(), 15
rm_regex_bracket, 22
rm_regex_lock, 23
rstan::As.mcmc.list(), 15
rstan::stan(), 15

stanfit, 14, 15
stats::quantile(), 20

trace_plot, 23
trace_plot(), 7

vcov_decomp, 24

27

28 INDEX

write_model, 25

	array_format
	cjs
	cjs_no_rho
	density_plot
	diag_plots
	drop_index
	get_params
	id_mat
	ins_regex_bracket
	ins_regex_lock
	list_out
	match_params
	mytitle
	postpack
	post_bind
	post_convert
	post_dim
	post_remove
	post_subset
	post_summ
	post_thin
	rm_regex_bracket
	rm_regex_lock
	trace_plot
	vcov_decomp
	write_model
	Index

